EXTRA DIMENSIONS

Kaustubh Agashe

LECTURE 4

MIXING OF ZERO AND KK MODES FOR W, Z VIA HIGGS VEV

Zero and KK modes for $W_{i=1,2,3}$ and B (hypercharge) defined with v=0 (no kinetic/mass mixing)

v
eq 0: mass mixing for zero-modes (as in SM) ightharpoonup 0 Define $Z_{\mu}^{(0)}$, $A_{\mu}^{(0)}$ as combinations of $W_3^{(0)}$ and $B^{(0)}$: diagonalize 0-mode mass mixing (as in SM) $g_{W^{(0)}} = g_{5\,2}/\sqrt{2\pi R + r}, \; g_{Z^{(0)}} = g_{5\,Z}/\sqrt{2\pi R + r}...$

$$g_{W^{(0)}}=g_{5\,2}/\sqrt{2\pi R+r},\;g_{Z^{(0)}}=g_{5\,Z}/\sqrt{2\pi R+r}...$$
 $(g_{5\,Z}^2=g_{5\,2}^2+g_5'^{\,2})$

Define $Z^{(n)}$ and $A^{(n)}$ using same (0-mode) mixing angles $A^{(n)}_{\mu}$ does not couple to Higgs (like zero-mode)

ullet Zero and KK modes of W mix via Higgs vev localized at $y=\pi R$ (similarly for Z): mass eigenstates are mixtures diagonalize 2×2 mass matrix (zero and 1 KK mode) for simplicity (homework 3)

2. SHIFT IN COUPLING TO Z

Shift in coupling of fermion at y=0 from pure zero-mode coupling, ${\rm due\ to\ (small)\ KK\ } Z {\rm\ component\ of\ SM\ } Z {:}$ $g_Z=g_{Z^{(0)}}+\delta g_Z$

Estimate via mass insertion diagrams

(valid for $v \times \text{couplings} \ll m_{KK}$):

$$\delta g_Z \sim g_{Z^{(0)}}^2 v^2/m_{KK}^2$$
 ,

ightarrow no enhancement in δg_Z for large brane kinetic terms $(r/R\gg 1)$

(enhancement at Higgs-KK Z vertex cancels suppression at fermion-KK Z vertex)

 \bullet Agrees with SM prediction at $\sim 0.1\%$ level \rightarrow $m_{KK} \stackrel{>}{\sim}$ a few TeV

3. ρ PARAMETER

Shift in W mass from pure zero-mode mass (also for Z):

$$M_W^2 = M_{W^{(0)}}^2 + \delta M_W^2 \tag{1}$$

$$M_{W^{(0)}}^2 = \frac{1}{4} g_{W^{(0)}}^2 v^2 \tag{2}$$

$$\frac{\delta M_W^2}{M_{W^{(0)}}^2} \sim g_{W^{(0)}}^2 \frac{v^2}{m_{KK}^2} \frac{r}{R}$$
 (3)

What about

$$\rho = \frac{M_W^2}{M_Z^2} \times \frac{g_Z^2}{g_2^2} ? {4}$$

 $\rho=1$ in SM (tree-level); $\Delta\rho_{expt.}=\rho_{expt.}-1\sim10^{-3}$

Subtlety due to couplings modified from pure zero-mode:

 $g_Z=g_{Z^{(0)}}+\delta g_Z$, but δg_Z not enhanced by $r/R\gg 1$ \to set $g_Zpprox g_{Z^{(0)}}$ in $\Delta
ho$

$$\delta \rho \equiv \rho - 1 \sim \left(g_{Z^{(0)}}^2 - g_{W^{(0)}}^2 \right) \frac{v^2}{m_{KK}^2} \times \frac{r}{R}$$
 (5)

ullet $\Delta
ho$ enhanced by large brane kinetic terms ightarrow

$$m_{KK} \gtrsim 10$$
 TeV for $r/R \sim 10$

CUSTODIAL ISOSPIN IN SM

Higgs potential, V(|H|) with

$$H = (h_1, h_2, h_3, h_4) (6)$$

has enhanced $SO(4) \approx SU(2)_L \times SU(2)_R$ symmetry $\to SO(3) \approx SU(2)_{\rm cust.}$ by

$$\langle H \rangle = (0, 0, 0, v) \tag{7}$$

 \rightarrow equal mass for $W^L_{i=1,2,3}$

 W_3^L only mixes with B (no mixing for W_L^\pm)

$$\rightarrow M_Z^2 = 1/4 \ v^2 \left(g_2^2 + g'^2\right) \neq M_W^2 = 1/4 \ v^2 g_2^2$$

 \bullet Factor of g_Z^2/g_2^2 in definition $\rho=M_W^2/M_Z^2~g_Z^2/g_2^2$ takes this "violation of custodial symmetry" into account

CUSTODIAL ISOSPIN VIOLATION IN 5D

$$\Delta \rho$$
 from KK $\propto \left(g_{Z^{(0)}}^2 - g_{W^{(0)}}^2 \sim g_{B^{(0)}}^2\right)$ as in SM

• Additional mixing (due to KK modes):

$$W_{L\,3}^{(0)}-B^{(n)}$$
 (only in neutral sector) no charged counterpart

$$SU(2)_L imes U(1)_Y$$
 gauged in $5D o$ KK's only for $W_L^{3\,\pm}$ and B new effect not taken into account by factor of g_Z^2/g_2^2 in definition of ρ

$$\begin{split} W_{L\,3}^{(0)} - B^{(n)} \text{ mass term} \\ \sim g_{W^{(0)}} g_5' \times f_n(\pi R) v^2 \sim g_{W^{(0)}} g_{B^{(0)}} v^2 \sqrt{r/R} \\ \rightarrow \text{ enhanced for large brane terms!} \end{split}$$

 $W_{L\;3}^{(0)}-W_{L\;3}^{(n)}$ mixing \emph{does} have counterpart in charged sector

CUSTODIAL ISOSPIN SYMMETRY IN 5D

Need extra KK modes to partner $B^{(n)}$: promote to a triplet

ullet Restore custodial isospin by $SU(2)_L imes SU(2)_R$ gauged in 5D (hep-ph/0308036)

 $SU(2)_L imes SU(2)_R imes U(1)_{B-L}$ for fermion hypercharges: $Y=T_{3R}+(B-L)/2$ $T_{3R}=\pm 1/2$ for $(u,d)_R$ and $(\nu,e)_R$, B-L=1/3,-1 for q,l (check)

KK $U(1)_{B-L}$ do not couple to Higgs: only KK $W_{L,R}^{3\,\pm}$ KK exchanges respect custodial isospin (same in charged and neutral channels)

BREAKING BY LARGE MASS ON BOUNDARY = BOUNDARY CONDITION

Break $SU(2)_R \times U(1)_{B-L} \to U(1)_Y$: no zero-modes for W_R^\pm and extra U(1) (combination of $U(1)_R$ and $U(1)_{B-L}$ orthogonal to $U(1)_Y$)

• Breaking must approximately preserve degeneracy – of mass and coupling (to Higgs) – for (at least light) $W_R^\pm \text{ vs. } W_R^3 \text{ modes to protect } \Delta \rho$

For large brane kinetic terms $(r/R\gg 1)$, KK's localized near $y=\pi R\to$ break on y=0 brane, degeneracy not affected by breaking

Large mass term for W_R^\pm , extra U(1) at y=0 (from scalar vev) \equiv requiring vanishing at y=0 (odd/Dirichlet boundary condition: section 3.3 of hep-ph/0404096)

SIGNALS (I)

 Coupling of KK gluon to top enhanced, to light fermions suppressed

Real production of gauge KK

Broad resonance decaying into top pairs challenge to distinguish from SM background: use spin-correlation (spin-1 for KK gluon vs. not for SM t-channel gluon exchange) or dominantly decays to RH top (due to $Z \to \bar{b}b$)

Distinguish from SUSY: no missing energy + top special

SIGNALS (II)

Virtual exchange of gauge KK

- 1. $\bar{t}tZ$ shifted compared to $\bar{e}eZ$: measure at ILC
- 2. Flavor violating coupling to KK $Z \rightarrow t \rightarrow cZ$ (at LHC)